扣丁学堂分享各种编程语言的深度学习库整理

2018-07-31 14:37:06 155浏览

如今加入互联网学习编程的小伙伴不断的增加,但是关于互联网的编程语言有多少的小伙伴了解呢,今天扣丁学堂大数据培训小编就给大家分享一下各种编程语言的深度学习库,我们一起来看一下吧。



扣丁学堂分享各种编程语言的深度学习库整理



Python


1、Theano是一个python类库,用数组向量来定义和计算数学表达式。它使得在Python环境下编写深度学习算法变得简单。在它基础之上还搭建了许多类库。


2、Keras是一个简洁、高度模块化的神经网络库,它的设计参考了Torch,用Python语言编写,支持调用GPU和CPU优化后的Theano运算。


3、Pylearn2是一个集成大量深度学习常见模型和训练算法的库,如随机梯度下降等。它的功能库都是基于Theano之上。


4、Lasagne是一个搭建和训练神经网络的轻量级封装库,基于Theano。它遵循简洁化、透明化、模块化、实用化和专一化的原则。


5、Blocks也是一个基于Theano的帮助搭建神经网络的框架。


6、Caffe是深度学习的框架,它注重于代码的表达形式、运算速度以及模块化程度。它是由伯克利视觉和学习中心(Berkeley Vision and Learning Center, BVLC)以及社区成员共同开发。谷歌的DeepDream项目就是基于Caffe框架完成。这个框架是使用BSD许可证的C++库,并提供了Python调用接口。


7、nolearn囊括了大量的现有神经网络函数库的封装和抽象接口、大名鼎鼎的Lasagne以及一些机器学习的常用模块。


8、Genism也是一个用Python编写的深度学习小工具,采用高效的算法来处理大规模文本数据。


9、Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。


10、deepnet是基于GPU的深度学习算法函数库,使用Python语言开发,实现了前馈神经网络(FNN)、受限玻尔兹曼机(RBM)、深度信念网络(DBN)、自编码器(AE)、深度玻尔兹曼机(DBM)和卷积神经网络(CNN)等算法。


11、Hebel也是深度学习和神经网络的一个Python库,它通过pyCUDA控制支持CUDA的GPU加速。它实现了最重要的几类神经网络模型,提供了多种激活函数和模型训练方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。


12、CXXNET是一个基于MShadow开发的快速、简洁的分布式深度学习框架。它是一个轻量级、易扩展的C++/CUDA神经网络工具箱,提供友好的Python/Matlab接口来进行训练和预测。


13、DeepPy是基于NumPy的深度学习框架。


14、DeepLearning是一个用C++和Python共同开发的深度学习函数库。


15、Neon是Nervana System 的深度学习框架,使用Python开发。



Matlab


1、ConvNet 卷积神经网络是一类深度学习分类算法,它可以从原始数据中自主学习有用的特征,通过调节权重值来实现。


2、DeepLearnToolBox是用于深度学习的Matlab/Octave工具箱,它包含深度信念网络(DBN)、栈式自编码器(stacked AE)、卷积神经网络(CNN)等算法。


3、cuda-convet是一套卷积神经网络(CNN)代码,也适用于前馈神经网络,使用C++/CUDA进行运算。它能对任意深度的多层神经网络建模。只要是有向无环图的网络结构都可以。训练过程采用反向传播算法(BP算法)。


4、MatConvNet是一个面向计算机视觉应用的卷积神经网络(CNN)Matlab工具箱。它简单高效,能够运行和学习最先进的机器学习算法。



CPP


1、eblearn是开源的机器学习C++封装库,由Yann LeCun主导的纽约大学机器学习实验室开发。它用基于能量的模型实现卷积神经网络,并提供可视化交互界面(GUI)、示例以及示范教程。


2、SINGA是Apache软件基金会支持的一个项目,它的设计目标是在现有系统上提供通用的分布式模型训练算法。


3、NVIDIA DIGITS是用于开发、训练和可视化深度神经网络的一套新系统。它把深度学习的强大功能用浏览器界面呈现出来,使得数据科学家和研究员可以实时地可视化神经网络行为,快速地设计出最适合数据的深度神经网络。


4、Intel® Deep Learning Framework提供了Intel®平台加速深度卷积神经网络的一个统一平台。



Java


1、N-Dimensional Arrays for Java (ND4J) 是JVM平台的科学计算函数库。它主要用于产品中,也就是说函数的设计需求是运算速度快、存储空间最省。


2、Deeplearning4j 是第一款商业级别的开源分布式深度学习类库,用Java和Scala编写。它的设计目的是为了在商业环境下使用,而不是作为一款研究工具。


3、Encog是一个机器学习的高级框架,涵盖支持向量机、人工神经网络、遗传编程、贝叶斯网络、隐马可夫模型等,也支持遗传算法。



JavaScript


Convnet.js 由JavaScript编写,是一个完全在浏览器内完成训练深度学习模型(主要是神经网络)的封装库。不需要其它软件,不需要编译器,不需要安装包,不需要GPU,甚至不费吹灰之力。



Lua


Torch是一款广泛适用于各种机器学习算法的科学计算框架。它使用容易,用快速的脚本语言LuaJit开发,底层是C/CUDA实现。Torch基于Lua编程语言。



Julia


Mocha是Julia的深度学习框架,受C++框架Caffe的启发。Mocha中通用随机梯度求解程序和通用模块的高效实现,可以用来训练深度/浅层(卷积)神经网络,可以通过(栈式)自编码器配合非监督式预训练(可选)完成。它的优势特性包括模块化结构、提供上层接口,可能还有速度、兼容性等更多特性。



Lisp


Lush(Lisp Universal Shell)是一种面向对象的编程语言,面向对大规模数值和图形应用感兴趣的广大研究员、实验员和工程师们。它拥有机器学习的函数库,其中包含丰富的深度学习库。



Haskell


DNNGraph是Haskell用于深度神经网络模型生成的领域特定语言(DSL)。



.NET


Accord.NET 是完全用C#编写的.NET机器学习框架,包括音频和图像处理的类库。它是产品级的完整框架,用于计算机视觉、计算机音频、信号处理和统计应用领域。



R


1、darch包可以用来生成多层神经网络(深度结构)。训练的方法包括了对比散度的预训练和众所周知的训练算法(如反向传播法或共轭梯度法)的细调。


2、deepnet实现了许多深度学习框架和神经网络算法,包括反向传播(BP)、受限玻尔兹曼机(RBM)、深度信念网络(DBP)、深度自编码器(Deep autoencoder)等等。



以上就是扣丁学堂大数据在线学习小编给大家分享的各种编程语言的深度学习库整理大全,希望对小伙伴们有帮助。想要了解更多内容的小伙伴可以登录扣丁学堂咨询,扣丁学堂不仅有专业的大数据培训班供学员报名学习,还有大量的大数据视频教程和与时俱进的课程体系,想要学习大数据的小伙伴快快行动吧。扣丁学堂大数据学习群:209080834。


扣丁学堂微信公众号

关注微信公众号获取更多学习资料



查看更多关于“大数据培训资讯”的相关文章>>




标签: 大数据培训 大数据视频教程 大数据在线学习 大数据在线视频 大数据分析教程 大数据基础教程 大数据入门教程 大数据在线学习 大数据云计算 扣丁学堂分享各种编程语言的深度学习库整理
扣丁微信
扣丁小程序
15311698296

全国免费咨询热线

邮箱:codingke@1000phone.com

官方群:148715490

北京千锋互联科技有限公司版权所有   北京市海淀区宝盛北里西区28号天丰利商场4层
京ICP备12003911号-6   Copyright © 2013 - 2018
返回顶部 返回顶部